Many tests of significance: new methods for controlling type I errors.
نویسندگان
چکیده
There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise control is intended to deal with the multiplicity issue of computing many tests of significance, yet such control is conservative--that is, less powerful--compared to per test/hypothesis control. The purpose of our article is to introduce the readership, particularly those readers familiar with issues related to controlling Type I errors when many tests of significance are computed, to newer methods that provide protection from the effects of multiple testing, yet are more powerful than familywise controlling methods. Specifically, we introduce a number of procedures that control the k-FWER. These methods--say, 2-FWER instead of 1-FWER (i.e., FWER)--are equivalent to specifying that the probability of 2 or more false rejections is controlled at .05, whereas FWER controls the probability of any (i.e., 1 or more) false rejections at .05. 2-FWER implicitly tolerates 1 false rejection and makes no explicit attempt to control the probability of its occurrence, unlike FWER, which tolerates no false rejections at all. More generally, k-FWER tolerates k - 1 false rejections, but controls the probability of k or more false rejections at α =.05. We demonstrate with two published data sets how more hypotheses can be rejected with k-FWER methods compared to FWER control.
منابع مشابه
Controlling the rate of Type I error over a large set of statistical tests.
When many tests of significance are examined in a research investigation with procedures that limit the probability of making at least one Type I error--the so-called familywise techniques of control--the likelihood of detecting effects can be very low. That is, when familywise error controlling methods are adopted to assess statistical significance, the size of the critical value that must be ...
متن کاملEFFECTIVENESS OF INSTRUCT COGNITIVE ERRORS IN THE WAY OF PHILOSOPHY FOR CHILDREN AND ADOLESCENTS, IN COGNITIVE ERRORS, WELL-BEING AND BLOOD SUGAR LEVELS OF CHILDREN AND ADOLESCENTS WITH TYPE I DIABETES
Background: Type 1 diabetes is a chronic disease that children and adolescents do not have the ability to care for themselves, despite having enough information about their self-care (nutrition, insulin, exercise, etc.). Self-care, such as any behavior, can be influenced by the way of thinking, and the philosophy teaching method can be a suitable educational tool for changing thinking. The purp...
متن کاملGuidelines for Multiple Testing in Impact Evaluations of Educational Interventions
A. INTRODUCTION Studies that examine the impacts of education interventions on key student, teacher, and school outcomes typically collect data on large samples and on many outcomes. In analyzing these data, researchers typically conduct multiple hypothesis tests to address key impact evaluation questions. Tests are conducted to assess intervention effects for multiple outcomes, for multiple su...
متن کاملSetting an Optimal α That Minimizes Errors in Null Hypothesis Significance Tests
Null hypothesis significance testing has been under attack in recent years, partly owing to the arbitrary nature of setting α (the decision-making threshold and probability of Type I error) at a constant value, usually 0.05. If the goal of null hypothesis testing is to present conclusions in which we have the highest possible confidence, then the only logical decision-making threshold is the va...
متن کاملThe use of meta-analytic statistical significance testing.
Meta-analysis multiplicity, the concept of conducting multiple tests of statistical significance within one review, is an underdeveloped literature. We address this issue by considering how Type I errors can impact meta-analytic results, suggest how statistical power may be affected through the use of multiplicity corrections, and propose how meta-analysts should analyze multiple tests of stati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Psychological methods
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2011